LP Login

Think Big. Move Fast.

I saw today that Radar raised a Series B for its semantic web application. As I’ve noted in the past, I am a believer in approaching the semantic web top down rather than bottom up, i.e. by inferring structure from domain knowledge rather than requiring all websites to mark up their content in RDF. The user doesn’t care about the semantic web (just as they don’t care about wikis or web 2.0 or tagging), all they care about is that they can more quickly get to the things that they want. The mechanisms that we use to create this better experience should be invisible to the user.

Two companies that are taking this approach are doing it in travel. Travel is a good vertical to start in for three reasons (i) lots of users (ii) well defined universe of data and (iii) easy to monetize.

The first of these is Tripit. Tripit takes travel confirmation emails from multiple sources and creates a master itinerary. As Mike Arrington noted in Techcrunch:

It’s dead simple to use and it keeps you organized – all you have to do is forward confirmation emails to them when you purchase airline tickets, hotel reservations, car rentals, etc. Tripit pulls the relevant information out of the emails and builds an organized itinerary for you. You can send emails in any order, for multiple trips, whatever. It just figures everything out and organizes it.

This is a great example of the semantic web being used to improve a users experience, invisibly. The user neither knows nor cares that Tripit is inferring structure from the emails (e.g. SFO is an airport in San Francisco, the Clift is a hotel in San Francisco, and since your reservation at the Clift starts on the same day as your arrive into SFO, Tripit will offer driving directions automatically from SFO to the Clift etc). All the user knows is that they automagically have a single itinerary compiled and supplemented with other relevant information (e.g. maps, weather etc).

The second is Kango. Kango helps travelers decide where they want to go by crawling 10,000 sites and 18,000,000 reviews and organizing that content semantically. As Erik Schonfeld of Techcrunch notes:

But what’s promising about Kango is the way it slices up search subjectively. Kango is building a semantic search engine focussed narrowly on travel. It parses the language in all of those reviews and guides, and categorizes them by generating tags for them. “You cannot wait for users to add tags, you have to derive them,” says CEO Yen Lee. So hotels that have been reviewed across the Web (on sites like Yahoo Travel, TripAdvisor, or Yelp) with words such as “perfect,” “relaxing,” “couples,” “honeymoon,” or “spa” would rank higher in a search for romantic travel. Hotels associated with the words “kitchen,” “pool,” and “kids,” would rank higher in a search for family trips.

Again, the semantics are being applied in a way that is invisible to users. Users don’t need to know how key words in reviews are mapped to characteristics like “family” or “romantic”. The company uses its domain knowledge to make this transparent to the user.

Expect to see more such semantic web approaches to specific verticals.

5 Responses to Semantic web in travel

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>